A Criterion for the Convergence of Learning with Spike Timing Dependent Plasticity
نویسندگان
چکیده
We investigate under what conditions a neuron can learn by experimentally supported rules for spike timing dependent plasticity (STDP) to predict the arrival times of strong “teacher inputs” to the same neuron. It turns out that in contrast to the famous Perceptron Convergence Theorem, which predicts convergence of the perceptron learning rule for a strongly simplified neuron model whenever a stable solution exists, no equally strong convergence guarantee can be given for spiking neurons with STDP. But we derive a criterion on the statistical dependency structure of input spike trains which characterizes exactly when learning with STDP will converge on average for a simple model of a spiking neuron. This criterion is reminiscent of the linear separability criterion of the Perceptron Convergence Theorem, but it applies here to the rows of a correlation matrix related to the spike inputs. In addition we show through computer simulations for more realistic neuron models that the resulting analytically predicted positive learning results not only hold for the common interpretation of STDP where STDP changes the weights of synapses, but also for a more realistic interpretation suggested by experimental data where STDP modulates the initial release probability of dynamic synapses.
منابع مشابه
Spike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملWhat Can a Neuron Learn with Spike-Timing-Dependent Plasticity?
Spiking neurons are very flexible computational modules, which can implement with different values of their adjustable synaptic parameters an enormous variety of different transformations F from input spike trains to output spike trains. We examine in this letter the question to what extent a spiking neuron with biologically realistic models for dynamic synapses can be taught via spike-timing-d...
متن کاملSpike-timing-dependent synaptic plasticity can form "zero lag links" for cortical oscillations
We study the impact of spike-timing-dependent synaptic plasticity (STDP) on coherent gamma activity between distant cortical regions with reciprocal projections. Our simulation network consists of two areas and includes a STDP model re4ecting e5cacy suppression between pre/ postsynaptic spike pairs as found in recent experiments during stimulation with spike trains (Nature 416 (2002) 433). We 8...
متن کاملA critique of BCM behavior verification for STDP-type plasticity models
Rate based (Bienenstock-Cooper-Munroe, BCM) and spike timing dependent plasticity (STDP) are the two principal learning behaviors found at cortical synapses. Some BCM induction protocols have been shown to be compatible with STDP rules, thus combining both forms of plasticity. However, we demonstrate that the majority of actual experimental BCM protocols cannot be reproduced by STDP. This sensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005